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Abstract

We propose a new concept, the pairwise farsightedly stable set, in order to predict

which networks may be formed among farsighted players. A set of networks G is pair-

wise farsightedly stable (i) if all possible pairwise deviations from any network g ∈ G

to a network outside G are deterred by the threat of ending worse off or equally well

off, (ii) if there exists a farsightedly improving path from any network outside the set

leading to some network in the set, and (iii) if there is no proper subset of G satisfying

(i) and (ii). We show that a non-empty pairwise farsightedly stable set always exists

and we provide a full characterization of unique pairwise farsightedly stable sets of

networks. Contrary to other pairwise concepts, pairwise farsighted stability yields a

Pareto dominating network, if it exists, as the unique outcome. Finally, we study

the relationship between pairwise farsighted stability and other concepts such as the

largest consistent set.
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1 Introduction

The organization of individual agents into networks and groups or coalitions plays an im-

portant role in the determination of the outcome of many social and economic interactions.

For instance, networks of personal contacts are important in obtaining information about

job opportunities. Goods can be traded and exchanged through networks of buyers and

sellers. The partitioning of societies into groups is also important in many contexts, such

as the provision of public goods and the formation of alliances, cartels and federations.1

A simple way to analyze the networks that one might expect to emerge in the long run

is to examine the requirement that individuals do not benefit from altering the structure

of the network. A weak version of such a condition is the pairwise stability notion defined

by Jackson and Wolinsky (1996). There are alternative ways to model network stability.

One is to explicitly model a game by which links form and then to solve that game

using the concept of Nash equilibrium or one of its refinements. Aumann and Myerson

(1988) take such an approach in the context of communication games, where individuals

sequentially propose links. However, such an approach has the disadvantage that the game

is necessarily ad hoc and is quite sensitive to the exact network formation process.

Dutta and Mutuswami (1997) analyze a link formation game where individuals simul-

taneously choose all the links they wish to be involved in. But this approach is static and

myopic. Individuals cannot be forward-looking in the sense that they do not forecast how

others might react to their actions. For instance, individuals might not add a link that

appears valuable to them given the current network, as that might in turn lead to the

formation of other links and ultimately lower the payoffs of the original individuals.

A dynamic (but still myopic) network formation process has been recently studied by

Jackson and Watts (2002), who have proposed a dynamic process in which individuals

form and sever links based on the improvement that the resulting network offers them

relative to the current network. This deterministic dynamic process may end at stable

networks or in some cases may cycle.2

We propose a new concept, pairwise farsightedly stable set, in order to predict which

networks may be formed among farsighted players. A set of networks G is pairwise far-

sightedly stable (i) if all possible pairwise deviations from any network g ∈ G are deterred

by the threat of ending worse off or equally well off, (ii) if there exists a farsightedly im-

proving path from any network outside the set leading to some network in the set, and (iii)

if there is no proper subset of G satisfying (i) and (ii). In contrast to other concepts incor-

1Jackson (2003, 2005) provides surveys of models of network formation.
2Watts (2001) has extended the Jackson and Wolinsky model to a dynamic process but she has limited

attention to the context of the connections model and a particular deterministic dynamic.
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porating farsightedness, we propose a set-valued concept which not only requests that all

possible pairwise deviations out of the set are deterred by the threat of ending worse off,

but also that the networks within the set are robust to perturbations. Unintended changes

may be due to exogenous forces acting on the network, or simply miscalculations or errors

on the part of an individual making an assessment or taking an action. Robustness to

perturbations asks for the existence of a farsightedly improving path from any network

outside the set leading to some network in the set.3

A farsightedly improving path is a sequence of networks that can emerge when players

form or sever links based on the improvement the end network offers relative to the current

network. Each network in the sequence differs by one link from the previous one. If a link

is added, then the two players involved must both prefer the end network to the current

network, with at least one of the two strictly preferring the end network. If a link is

deleted, then it must be that at least one of the two players involved in the link strictly

prefers the end network. We show that a pairwise farsightedly stable set always exists and

we provide a full characterization of unique pairwise farsightedly stable sets of networks.

As a corollary, we give the necessary and sufficient condition such that a unique pairwise

farsightedly stable set consisting of a single network exists.

We also look at the relationship between farsighted stability and efficiency of net-

works. We find that the pairwise farsightedly stable sets and the set of strongly efficient

networks, those which are socially optimal, may be disjoint. We provide conditions on the

allocation rule and the value function such that pairwise farsighted stability singles out

the strongly efficient network. Contrary to other pairwise concepts, if there is a network

that Pareto dominates all other networks, then that network is the unique prediction of

pairwise farsighted stability.

Finally, we study the relationship between pairwise farsightedly stability and other

concepts such as the pairwise largest consistent set, a notion due to Chwe (1994). By

means of examples we show that there is no relationship between (i) pairwise farsightedly

stable sets and pairwise largest consistent sets, (ii) pairwise farsightedly stable sets and

pairwise stability. Indeed, the pairwise stable networks may not belong to any pairwise

farsightedly stable set of networks.

Although the literature on stability in networks is well established and growing (see

Jackson, 2005), the literature on farsighted stability is still in its infancy. Page, Wooders

and Kamat (2005) have addressed the issue of farsighted stability in network formation

3Jackson and Watts (2002) use improving paths as the foundation for a stochastic analysis, where in

addition to intended changes in the network, unintended mutations or errors are introduced. However, in

their definition of improving path it is assumed that players behave myopically: all a player needs to know

is whether adding or deleting a given link is directly beneficial to him or her in the current circumstances.
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by extending Chwe’s (1994) result on the nonemptiness of farsightedly consistent sets. In

order to demonstrate the existence of farsightedly consistent directed networks, they have

provided a new framework that extends the standard notion of a directed network and

also introduces the notion of a supernetwork. A supernetwork specifies how the different

directed networks are connected via coalitional moves and coalitional preferences, and thus

provides a network representation of agent preferences and the rules governing network

formation (that is, a supernetwork is equivalent to the social environment studied by

Chwe (1994), where the set of outcomes is replaced by the set of directed networks).

Given the rules governing network formation and agents preferences as represented via

the supernetwork, a directed network (i.e., a particular node in the supernetwork) is

said to be farsightedly consistent if no agent or coalition of agents is willing to alter

the network (via the addition, subtraction, or replacement of arcs) in fear that such an

alteration might induce further network alterations by other agents or coalitions that in

the end leave the initially deviating agent or coalition no better off, and possibly worse

off. They have shown that for any supernetwork corresponding to a given collection of

directed networks, the set of farsightedly consistent networks is nonempty; see also Page

and Wooders (2005). Dutta, Ghosal and Ray (2005) have studied a model of dynamic

network formation where individuals are farsighted and evaluate the desirability of a move

in terms of its consequences on the entire discounted stream of payoffs. Only special

coalitions are active at any date. They have shown that a Markovian equilibrium process

of network formation exists and that there are valuation structures in which no equilibrium

strategy profile yields paths that are absorbed solely into a set of efficient networks. This

can be viewed as the dynamic counterpart of the conflict between (static) stability and

efficiency demonstrated by Jackson and Wolinsky (1996). They provide two conditions on

the valuation structure that guarantee that there is some equilibrium profile at which the

complete graph is reached in the limit from all initial networks.4

The paper is organized as follows. In Section 2 we introduce some notations and basic

properties and definitions for networks. In Section 3 we define the notion of pairwise

farsightedly stable set of networks and we study its properties. In Section 4 we look

at the relationship between farsighted stability and efficiency of networks. In Section 5

we analyze the relationship between pairwise farsightedly stable set of networks and the

pairwise largest consistent set. In Section 5 we conclude.

4Other approaches to farsightedness in network formation are suggested by the work of Xue (1998),

Herings, Mauleon and Vannetelbosch (2004), and Mauleon and Vannetelbosch (2004).
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2 Networks

Let N = {1, ..., n} be the finite set of players who are connected in some network rela-

tionship. The network relationships are reciprocal and the network is thus modeled as a

non-directed graph. Individuals are the nodes in the graph and links indicate bilateral

relationships between individuals. Thus, a network g is simply a list of which pairs of

individuals are linked to each other. We write ij ∈ g to indicate that i and j are linked

under the network g. Let gN be the collection of all subsets of N with cardinality 2, so gN

is the complete network. The set of all possible networks or graphs on N is denoted by G.

The set G is the collection of all subsets of gN . The network obtained by adding link ij to

an existing network g is denoted g+ ij and the network that results from deleting link ij

from an existing network g is denoted g− ij. For any network g, let N(g) = {i | there is j

such that ij ∈ g} be the set of players who have at least one link in the network g. A

path in a network g ∈ G between i and j is a sequence of players i1, ..., iK such that

ikik+1 ∈ g for each k ∈ {1, ...,K − 1} with i1 = 1 and iK = j. A nonempty network h ⊆ g

is a component of g, if for all i ∈ N(h) and j ∈ N(h), i �= j, there exists a path in h

connecting i and j, and for any i ∈ N(h) and j ∈ N(g), ij ∈ g implies ij ∈ h. The set of

components of g is denoted by C(g).5

A value function is a function v : G→ R that keeps track of how the total societal value

varies across different networks. The set of all possible value functions is denoted V . An

allocation rule is a function Y : G×V → RN that keeps track of how the value is allocated

or distributed among the players forming a network, and satisfies
∑

i∈N Yi(g, v) = v(g) for

all v and g.

Jackson and Wolinsky (1996) have proposed basic properties of value and allocation

functions. A value function is component additive if v(g) =
∑

h∈C(g) v(h) for all g ∈ G.

Component additive value functions are the ones for which the value of a network is the

sum of the value of its components. An allocation rule Y is component balanced if for

any component additive v ∈ V , g ∈ G, and h ∈ C(g), we have
∑

i∈N(h) Yi(h, v) = v(h).

Component balancedness only puts conditions on Y for v’s that are component additive,

so Y can be arbitrary otherwise. Given a permutation of players π and any g ∈ G, let

gπ = {π(i)π(j) | ij ∈ g}. Thus, gπ is a network that is identical to g up to a permutation

of the players. A value function is anonymous if for any permutation π and any g ∈ G,

v(gπ) = v(g). Given a permutation π, let vπ be defined by vπ(g) = v(gπ
−1

) for each g ∈ G.

An allocation rule Y is anonymous if for any v ∈ V , g ∈ G, and permutation π, we have

5Throughout the paper we use the notation ⊆ for weak inclusion and � for strict inclusion. Finally, #

will refer to the notion of cardinality.
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Yπ(i)(g
π , vπ) = Yi(g, v).6

An allocation rule that is component balanced and anonymous is the componentwise

egalitarian allocation rule. For a component additive v and network g, the componentwise

egalitarian allocation rule Y ce is such that for any h ∈ C(g) and each i ∈ N(h), Y ce
i (g, v) =

v(h)/#N(h). For a v that is not component additive, Y ce(g, v) = v(g)/n for all g; thus,

Y ce splits the value v(g) equally among all players if v is not component additive.

In evaluating societal welfare, we may take various perspectives. A network g is Pareto

efficient relative to v and Y if there does not exist any g′ ∈ G such that Yi(g
′, v) ≥ Yi(g, v)

for all i with at least one strict inequality. A network g ∈ G is strongly efficient relative

to v if v(g) ≥ v(g′) for all g′ ∈ G. This is a strong notion of efficiency as it takes the

perspective that value is fully transferable.

The network-theoretic literature uses two different notions of a deviation by a coalition.

Pairwise deviations (Jackson and Wolinsky, 1996) are deviations involving a single link at

a time. Moreover, link addition is bilateral (two players that would be involved in the link

must agree to adding the link), link deletion is unilateral (at least one player involved in

the link must agree to delete the link), and network changes take place one link at a time.

Coalitionwise deviations (Jackson and van den Nouweland, 2005) are deviations involving

several links and some group of players at a time. Link addition is bilateral, link deletion

is unilateral, and multiple link changes can take place at a time. Whether a pairwise

deviation or a coalitionwise deviation makes more sense will depend on the setting within

which network formation takes place.

We will restrict our analysis to pairwise deviations. A simple way to analyze the

networks that one might expect to emerge in the long run is to examine the requirement

that agents do not benefit from altering the structure of the network. A weak version of

such a condition is the pairwise stability notion defined by Jackson and Wolinsky (1996).

A network is pairwise stable if no player benefits from severing one of their links and no

other two players benefit from adding a link between them, with one benefiting strictly

and the other at least weakly.

Definition 1 A network g is pairwise stable with respect to value function v and allocation

rule Y if

(i) for all ij ∈ g, Yi(g, v) ≥ Yi(g − ij, v) and Yj(g, v) ≥ Yj(g − ij, v), and

(ii) for all ij /∈ g, if Yi(g, v) < Yi(g + ij, v) then Yj(g, v) > Yj(g + ij, v).

6Anonymous value functions are those such that the architecture of a network matters, but not the

labels of individuals. Anonymity of an allocation rule requires that if all that has changed is the labels of

the agents and the value generated by networks has changed in an exactly corresponding fashion, then the

allocation only changes according to the relabeling.
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We say that g′ is adjacent to g if g′ = g + ij or g′ = g − ij for some ij. A network

g′ defeats g if either g′ = g − ij and Yi(g′, v) > Yi(g, v) or Yj(g′, v) > Yj(g, v), or if

g′ = g + ij with Yi(g′, v) ≥ Yi(g, v) and Yj(g′, v) ≥ Yj(g, v) with at least one inequality

holding strictly. Pairwise stability is equivalent to the statement of not being defeated by

another network.7

3 Pairwise farsightedly stable sets of networks

The following example shows that a network that is pairwise stable need not be farsight-

edly stable.

Example 1 Criminal networks.8 Each player is a criminal. If two players are connected,

then they are part of the same criminal network. Each group of connected criminals has a

positive probability of winning the loot. The loot is divided among the connected criminals

based on the network architecture. Criminal i’s payoff is given by

Yi(g) = pi(g) · (yi(g)− φ) + (1− pi(g)) · yi(g)

= yi(g)− pi(g) · φ,

where yi(g) is i’s expected share of the loot, pi(g) is i’s probability of being caught, φ > 0

the monetary equivalent of the penalty.9 Beside being competitors in the crime market,

criminals may also benefit from having criminal mates. It is assumed that (i) the bigger

the group of connected criminals, the higher its probability of getting the loot, and (ii)

the higher the number of links a criminal has, the lower his individual probability of being

caught. Let ni be the number of links criminal i has. Thus, it is assumed that pi(g) is

decreasing in ni. A criminal i that is part of a group S expects a share of the loot B given

7Jackson and van den Nouweland (2005) have proposed a refinement of pairwise stability where coali-

tionwise deviations are allowed: the strongly stable networks. A strongly stable network is a network which

is stable against changes in links by any coalition of individuals. Strongly stable networks are Pareto effi-

cient and maximize the overall value of the network if the value of each component of a network is allocated

equally among the members of that component.
8This is a simplified version of Calvó-Armengol and Zenou’s (2004) model where, in addition to forming

links with criminal mates, criminals choose their level of criminal activities and whether or not to be

involved in criminal activities.
9The value function v is simply v(g) =

∑
i∈N

Yi(g). Since v is fixed, we omit it in the notation of

Yi(v, g).
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by

yi(g) = |S|
n
· ni∑

j∈S

nj
·B, if |S| ≥ 2,

yi(g) = 1
n
·B, if |S| = 1,

where |S| /n is the probability that group S will win the loot, and ni · [
∑

j∈S nj ]
−1 is

the share of the loot criminal i ∈ S would obtain.10 In Figure 1 we have depicted the

3−player case with B = 6 and pi(g) = (n−1−ni)/n. For φ <
3
2 , both the partial networks

(g1, g2, g3) and the complete network (g7) are pairwise stable networks. For φ ≥ 3
2 , the

complete network is the only pairwise stable network.
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Figure 1: Criminal networks.

Take some φ smaller than 3/2 in Example 1. Notice that two links have to be added

to a partial network g1, g2, or g3 to form the complete network g7. Farsighted players may

decide to add one link to a network like g1, g2, or g3, accepting a loss, in the expectation

that a further link will be added to form the complete network. Starting from the complete

network, farsighted players will decide not to delete a link in fear of eventually going back

to the partial network. A farsightedly improving path is a sequence of networks that can

emerge when players form or sever links based on the improvement the end network offers

10This assumption captures the idea that delinquents learn from other criminals belonging to the same

network how to commit crime in a more efficient way by sharing the know-how about the technology of

crime (see Calvó-Armengol and Zenou, 2004).
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relative to the current network.11 Each network in the sequence differs by one link from

the previous one. If a link is added, then the two players involved must both prefer the

end network to the current network, with at least one of the two strictly preferring the end

network. If a link is deleted, then it must be that at least one of the two players involved

in the link strictly prefers the end network. We now introduce the formal definition of a

farsightedly improving path.

Definition 2 A farsightedly improving path from a network g to a network g′ is a finite

sequence of graphs g1, ..., gK with g1 = g and gK = g′ such that for any k ∈ {1, ..., K − 1}

either:

(i) gk+1 = gk − ij for some ij such that Yi(gK , v) > Yi(gk , v) or Yj(gK , v) > Yj(gk, v), or

(ii) gk+1 = gk + ij for some ij such that Yi(gK , v) > Yi(gk, v) and Yj(gK , v) ≥ Yj(gk, v).

It follows immediately from the definition that the existence of a farsightedly improving

path from g to g′ implies g′ �= g.

If there exists a farsightedly improving path from g to g′, then we write g → g′. For

a given network g, let F (g) = {g′ ∈ G | g → g′}. This is the set of networks that can

be reached by a farsightedly improving path from g. Thus, g → g′ means that g′ is the

endpoint of at least one farsightedly improving path from g.

Suppose in Example 1 with φ smaller than 3/2 that the starting network g is a partial

network, more specifically, g = g1, g2, or g3. Then, from g no myopic improving path results

in the complete network. The problem is that an isolated player will loose from making a

link with any of the other players. However, there are farsightedly improving paths that

go to the complete network. An example of the sequence of graphs on the farsightedly

improving path is (g1, g4, g7) when starting in g1. Similar farsightedly improving paths

exist starting in any of the other partial networks. Examples of farsightedly improving

paths starting in g1 and ending in g7 are (g1, g4, g7), (g1, g5, g7), or even (g1, g0, g2, g6, g7).

Moreover, from any g �= g7 there is a farsightedly improving path going to g7. Thus,

we observe that the partial networks are pairwise stable, but not stable when players are

farsighted. The complete network on the other hand is not only pairwise stable. It is also

stable when players are farsighted.

We now introduce the new concept, pairwise farsightedly stable sets. A set of networks

G is pairwise farsightedly stable if (i) all possible pairwise deviations from any network

11Jackson and Watts (2002) have provided a myopic definition of an improving path. A “myopic”

improving path is a sequence of networks that can emerge when players form or sever links based on the

improvement the resulting network offers relative to the current network.
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g ∈ G to a network outside G are deterred by a credible threat of ending worse off or

equally well off, (ii) there exists a farsightedly improving path from any network outside

the set leading to some network in the set, and (iii) there is no proper subset of G satisfying

(i) and (ii) (minimality condition). Formally, pairwise farsightedly stable sets are defined

as follows.

Definition 3 A set of networks G ⊆ G is pairwise farsightedly stable with respect v and

Y if

(i) ∀ g ∈ G,

(ia) ∀ ij /∈ g such that g+ij /∈ G, ∃g′ ∈ G∩F(g+ij) such that (Yi(g′, v), Yj(g′, v)) =

(Yi(g, v), Yj(g, v)) or Yi(g′, v) < Yi(g, v) or Yj(g′, v) < Yj(g, v),

(ib) ∀ ij ∈ g such that g−ij /∈ G, ∃ g′, g′′ ∈ G∩F (g−ij) such that Yi(g′, v) ≤ Yi(g, v)

and Yj(g
′′, v) ≤ Yj(g, v),

(ii) ∀ g′ /∈ G we have g ∈ F (g′) for some g ∈ G,

(iii) � G′ � G such that G′ satisfies (ia), (ib), and (ii).

Part (ia) in Definition 3 captures that adding a link ij to a network g ∈ G that

leads to a network outside of G, is deterred by the threat of ending in g′. Here g′ is such

that there is a farsightedly improving path from g + ij to g′. Moreover, g′ belongs to G,

which makes g′ a credible threat. Part (ib) is a similar requirement, but then for the

case where a link is severed. Part (ii) in Definition 3 requires that the networks within

the set are robust to perturbations. Robustness to perturbations asks for the existence

of a farsightedly improving path from any network outside G leading to some network in

G.12 Notice that the set G (trivially) satisfies (ia), (ib), and (ii) in Definition 3. This

motivates the requirement of a minimality condition, namely Part (iii). Part (ii) implies

that if a set of networks is pairwise farsightedly stable, it is non-empty.

Theorem 1 A pairwise farsightedly stable set of networks exists.

Proof. Notice that G satisfies (i) and (ii). Let us proceed by contradiction. Assume

that there does not exist any set of networks G ⊆ G that is pairwise farsightedly stable.

This means that for any G0 ⊆ G that satisfies (i) and (ii) in Definition 3, we can find

12There are some random dynamic models of network formation that are based on incentives to form

links such as Watts (2001), Jackson and Watts (2002), and Tercieux and Vannetelbosch (2006). These

models aim to use the random process to select from the set of pairwise stable networks. Part (ii) in

Definition 3 asks for the robustness to perturbations of the set of pairwise farsightedly networks.
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a proper subset G1 that satisfies (i) and (ii). Iterating this reasoning we can build an

infinite decreasing sequence {Gk}k≥0 of elements of G satisfying (i) and (ii). But since G

has finite cardinality, this is not possible.

In Example 1 with n = 3, B = 6, and pi(g) = (n − 1 − ni)/n, the set consisting of the

complete network is the unique pairwise farsightedly stable set whatever the fine φ.

We consider first the case φ < 3
2 . It can be verified that F (g0) = {g1, g2, g3, g7},

F(g1) = {g2, g3, g7}, F(g2) = {g1, g3, g7}, F (g3) = {g1, g2, g7}, F (g4) = {g1, g2, g3, g7},

F(g5) = {g1, g2, g3, g7}, F (g6) = {g1, g2, g3, g7}, and F(g7) = ∅. Notice that the analysis of

farsightedly improving paths can be intricate. The only way to go from g1 to g2 is via g4.

At the same time it holds that g4 /∈ F (g1). Indeed, players 1 and 2 make a link to go from

g1 to the intermediate network g4 in the anticipation that player 3 will subsequently delete

his link with player 1. To go from g1 to the terminal network g4 is a strict deterioration

for players 2 and 3. The only thing player 1 can do is to sever his link with player 2, which

leads to g0. This is not helpful for player 1, since once at g0 he is still the only one that is

better off at g4 compared to g0, and there is nothing that he can do anymore.

We show next that {g7} is pairwise farsightedly stable. Since g7 ∈
⋂
g∈G\{g7}

F(g),

Part (ii) of the definition is clearly satisfied. Moreover, Part (i) is satisfied, since any

deviation from g7 may lead back to g7. Clearly, {g7} is minimal, so Part (iii) is satisfied

too.

There are no other pairwise farsightedly stable sets. Since F (g7) = ∅, Part (ii) implies

that g7 belongs to any pairwise farsightedly stable set. Since {g7} is pairwise farsightedly

stable, using Part (iii) it follows that {g7} is the only pairwise farsightedly stable set.

We now consider the case φ ≥ 3/2. We have F(g0) = {g1, g2, g3, g4, g5, g6, g7}, F (g1) =

{g4, g5, g7}, F (g2) = {g4, g6, g7}, F(g3) = {g5, g6, g7}, F(g4) = {g7}, F (g5) = {g7},

F(g6) = {g7}, and F (g7) = ∅. So, g7 ∈
⋂
g∈G\{g7}

F (g). Since F (g7) = ∅, we can use

the same arguments as in the case φ < 3/2 and can therefore conclude that {g7} is the

unique pairwise farsightedly stable set.

The next theorem provides an easy to verify condition for a set to be pairwise farsight-

edly stable.

Theorem 2 If for every g ∈ G\G we have F (g)∩G �= ∅ and for every g′ ∈ G, F(g′)∩G =

∅, then G is a pairwise farsightedly stable set.

Proof. Part (ii) is trivially satisfied.

Suppose Part (i) is not satisfied. Then there is g′ ∈ G and a deviation to g /∈ G

such that every g′′ ∈ G ∩ F(g) defeats g′. In particular, it then follows that g′′ ∈ F(g′), a

10



contradiction, since by assumption there is no g′′ ∈ G with that property. Consequently,

Part (i) holds.

To verify Part (iii), suppose there is a proper subset G′ of G that satisfies Parts (i)

and (ii). Let g′ be in G but not in G′. By assumption, F(g′)∩G = ∅ for every g′ ∈ G, so

F(g′) ∩G′ = ∅, and G′ violates Part (ii), leading to a contradiction. It follows that G is

minimal.

A byproduct of Example 4, to be presented later on in the paper, is that Theorem 2

cannot be extended to an “if and only if" statement. The “if and only if" statement is true,

however, when restricting the scope of the theorem to sets consisting of a single network.

Theorem 3 The set {g} is a pairwise farsightedly stable set if and only if for every

g′ ∈ G \ {g} we have g ∈ F (g′).

Proof. If {g} is a pairwise farsightedly stable set then by Part (ii) in Definition 3 it

follows that ∀g′ ∈ G \ {g} it holds g ∈ F(g′).

Now suppose that for every g′ ∈ G \ {g} we have g ∈ F(g′). Part (ii) is trivially satis-

fied. Since g ∈ F(g + ij) and g ∈ F (g − ij), Parts (ia) and (ib) hold. Finally, Part (iii)

is satisfied because {g} is a singleton.

Theorem 3 tells us that {g} is a pairwise farsightedly stable set if and only if there exists

a farsightedly improving path from any network leading to g. Part (iii) of the definition

implies that if {g} is a pairwise farsightedly stable set, then g does not belong to any other

pairwise farsightedly stable set. But there may be pairwise farsightedly stable sets not

containing g.

The next result provides a full characterization for unique pairwise farsightedly stable

sets.

Theorem 4 The set G is the unique pairwise farsightedly stable set if and only if G =

{g ∈ G | F(g) = ∅} and for every g ∈ G \G, F (g)∩G �= ∅.

Proof. (⇐) Part (ii) of Definition 3 is trivially satisfied. Suppose Part (i) is not satisfied.

Then there is g′ ∈ G and a deviation to g /∈ G such that every g′′ ∈ G∩F (g) defeats g′. In

particular, it then follows that g′′ ∈ F(g′), a contradiction, since by assumption F(g′) = ∅.

Consequently, Part (i) holds. Since F (g) = ∅, ∀g ∈ G, by Part ii it holds that G is a

subset of any pairwise farsightedly stable set. It then follows from Part (iii) that G is the

unique pairwise farsightedly stable set.

(⇒) Part (ii) yields that ∀g ∈ G \ G, F (g) ∩ G �= ∅. It remains to be shown that

F(g) = ∅, ∀g ∈ G. Suppose not, so let g∗ and g′ be such that g∗ ∈ G and g′ ∈ F (g∗).

11



Consider G′ = {g′} ∪ {g ∈ G | g′ /∈ F (g)}. Notice that g∗ /∈ G′ and that for any g /∈ G′ we

have that g′ ∈ F(g).

Claim: G′ satisfies Part (i) and (ii).

By construction of G′, Part (ii) is satisfied. Consider any pairwise deviation from g′

to g′′ /∈ G′. By construction of G′, g′ ∈ F (g′′) and the deviation is deterred. Consider any

pairwise deviation from any g0 ∈ G′\{g′} to some g′′ /∈ G′. Suppose that all g ∈ F (g′′)∩G′

are preferred by the players initially deviating to g0, then it follows that F (g′′)∩G′ ⊆ F (g0).

By definition of G′, g′ ∈ F (g′′), so g′ ∈ F(g′′) ∩G′ ⊆ F (g0), contradicting g′ /∈ F (g0) for

any g0 ∈ G′ \ {g′}. Consequently, all pairwise deviations from g0 ∈ G′ \ {g′} are deterred.

Since pairwise deviations from g′ are deterred too, the set G′ satisfies Part (ii).

Finally, if G′ satisfies Part (iii), then G′ is a pairwise farsightedly stable set, a con-

tradiction to the uniqueness of G. If G′ does not satisfy Part (iii), then, following the

reasoning in the proof of Theorem 1, there is a proper subset G′′ of G′ satisfying (i), (ii)

and (iii). Since g∗ ∈ G, but g∗ /∈ G′′, we obtain a contradiction to the uniqueness of G.

From Theorem 4 we obtain the following corollary that provides the necessary and

sufficient conditions such that there is a unique pairwise farsightedly stable set consisting

of a single network.

Corollary 1 The set {g} is the unique pairwise farsightedly stable set if and only if for

every g′ ∈ G \ {g} we have g ∈ F(g′) and F (g) = ∅.

When we compare Corollary 1 to Theorem 3, we find that Part (ii) of Definition 3

together with F (g) = ∅ leads to uniqueness of {g} as a pairwise farsightedly stable set,

whereas Part (ii) together with a non-empty F (g) leads to the existence of at least two

pairwise farsightedly stable sets, one of which is {g}.

Example 2 Symmetric Connections Model (Jackson and Wolinsky, 1996). Players form

links with each other in order to exchange information. If player i is connected to player

j, by a path of t links, then player i receives a payoff of δt from his indirect connection

with player j. It is assumed that 0 < δ < 1, and so the payoff δt decreases as the path

connecting players i and j increases; thus information that travels a long distance becomes

diluted and is less valuable than information obtained from a closer neighbor. Each direct

link ij results in a cost c to both i and j. This cost can be interpreted as the time a player

must spend with another player in order to maintain a direct link. Player i’s payoff from

a network g is given by

Yi(g) =
∑
j �=i

δt(ij) −
∑
j:ij∈g

c,

12
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Figure 2: The symmetric connections model with three players.

where t(ij) is the number of links in the shortest path between i and j (setting t(ij) =∞

if there is no path between i and j).

In Figure 2 we have depicted the 3−player case where (i) for c < δ(1−δ), the complete

network (g7 in Figure 2) is the unique pairwise stable network, (ii) for δ(1− δ) < c < δ,

the star networks (g4, g5, g6 in Figure 2) are pairwise stable, (iii) for c > δ, the empty

network is the unique pairwise stable network.

Applying our newly defined concept of farsightedly stable sets to the symmetric con-

nections model with three players, we obtain that a network g is pairwise stable if and

only if {g} is pairwise farsightedly stable. First we consider the case c < δ(1− δ). It holds

that F (g0) = {g1, g2, g3, g4, g5, g6, g7}, F (g1) = {g4, g5, g6, g7}, F (g2) = {g4, g5, g6, g7},

F(g3) = {g4, g5, g6, g7}, F(g4) = {g5, g6, g7}, F(g5) = {g4, g6, g7}, F (g6) = {g4, g5, g7}, and

F(g7) = ∅. Now it follows by Corollary 1 that {g7} is the unique pairwise farsightedly

stable set.

Next we consider the case δ(1−δ) < c < δ. It holds that F (g0) = {g1, g2, g3, g4, g5, g6},

F(g1) = {g4, g5, g6}, F (g2) = {g4, g5, g6}, F (g3) = {g4, g5, g6}, F(g4) = {g5, g6}, F(g5) =

{g4, g6}, F (g6) = {g4, g5}, and F(g7) = {g4, g5, g6}.

By a repeated application of Theorem 3, it follows that {g4}, {g5}, and {g6} are

pairwise farsightedly stable.

Finally, we examine the case c > δ. One may verify that F (g0) = ∅, F (g1) =

{g0}, F(g2) = {g0}, F(g3) = {g0}, F (g4) = {g0, g1, g2}, F (g5) = {g0, g1, g3}, F(g6) =

{g0, g2, g3}, and F (g7) = {g0, g1, g2, g3, g4, g5, g6}. It follows by Corollary 1 that {g0} is the

unique pairwise farsightedly stable set.
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Thus, Examples 1 and 2 suggest that pairwise farsighted stability may be a refinement

of pairwise stability as defined by Jackson and Wolinsky (1996). However, the next exam-

ple shows that the pairwise stable networks may not belong to any pairwise farsightedly

stable set of networks.

Example 3 Suppose that four players can form links. In the empty network, Yi(g) = 0

for all i ∈ N . In any g such that #(g) = 1 and player 4 does not belong to N(g), we

have Y4(g) = 1. Moreover, Y1({12}) = Y3({13}) = Y2({23}) = 4, Y2({12}) = Y1({13}) =

Y3({23}) = 2, Y1({23}) = Y2({13}) = Y3({12}) = 1. In any g such that #(g) = 2 and

player 4 does not belong to N(g), we have Yi(g) = 3 for i ∈ N(g), and Y4(g) = 1. We

define Yi({12, 13, 23}) = −1 for all i ∈ N . Finally, in any other network g, let Yi(g) = 0

for all i ∈ N . Figure 3 presents most of these network configurations. In this example the

pairwise stable networks are the complete network as well as the networks such that #(g)

equals 4 or 5.

We have F (g1) = {g2, g3, g4, g5, g6}, F (g2) = {g1, g3, g4, g5, g6}, F (g3) = {g1, g2, g4, g5, g6},

F(g4) = F (g5) = F(g6) = {g1, g2, g3}, F(g7) = {g1, g2, g3, g4, g5, g6} ∪ {g7 + ij | ij /∈ g7},

and F (g) = {g1, g2, g3, g4, g5, g6} for any other g. The pairwise farsightedly stable sets are

{g1}, {g2}, {g3}, and {g4, g5, g6}. On the contrary, the pairwise stable networks are all

networks g with #(g) ≥ 4.

Pairwise farsighted stability is a refinement of pairwise stability when there is a unique

pairwise farsightedly stable set.

Theorem 5 If G is the unique pairwise farsightedly stable set and the network g belongs

to G, then g is pairwise stable.

Proof. By Theorem 4, for g ∈ G, F (g) = ∅, which implies that g is pairwise stable.

Corollary 2 If {g} is the unique pairwise farsightedly stable set, then g is pairwise stable.

4 Efficiency and farsighted stability

We now turn to the question of the relationship between farsighted stability and efficiency

of networks. A first result is that the set of pairwise farsightedly stable networks and the

set of strongly efficient networks, those which are socially optimal, may be disjoint for all

14
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Figure 3: Pairwise farsighted stability and pairwise stability.

allocation rules that are component balanced and anonymous.13

Theorem 6 There exists a value function such that for every component balanced and

anonymous rule, strongly efficient networks are not included in any of the pairwise far-

sightedly stable sets.

Proof. Take the following value function defined for any g ∈ G : v({12, 13, 23}) = 9,

v({12, 23}) = 0, v({12, 13}) = 0, v({13, 23}) = 0, v({12}) = 8, v({23}) = 8, v({13}) = 8,

and v(∅) = 0. Fix any component balanced and anonymous allocation rule Y . Then, by

component balance and anonymity,

(i) Y1({12, 13, 23}, v) = Y2({12, 13, 23}, v) = Y3({12, 13, 23}, v) = 3,

13Bhattacharya (2005) has obtained a similar result with respect to the notion of the largest consistent

set.
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(ii) Y1({12, 23}, v) = c, Y3({12, 23}, v) = c, Y2({12, 23}, v) = −2c, Y2({12, 13}, v) = c,

Y3({12, 13}, v) = c, Y1({12, 13}, v) = −2c, Y1({13, 23}, v) = c, Y2({13, 23}, v) = c,

Y3({13, 23}, v) = −2c,

(iii) Y1({12}, v) = Y2({12}, v) = 4, Y3({12}, v) = 0, Y1({13}, v) = Y3({13}, v) = 4,

Y2({13}, v) = 0, Y2({23}, v) = Y3({23}, v) = 4, Y1({23}, v) = 0, and

(iv) Y1(∅, v) = Y2(∅, v) = Y3(∅, v) = 0.

The unique strongly efficient network is {12, 13, 23}. We have:

(i) F(∅) = {{12}, {13}, {23}, {12, 13, 23}};

(ii) F({12}) = {{13}, {23}}, F ({13}) = {{12}, {23}}, F({23}) = {{12}, {13}};

(iii) For c < 3, F({12, 13}) = {{12}, {13}, {23}, {12, 13, 23}}, for 3 ≤ c < 4, F ({12, 13}) =

{{12}, {13}, {23}}, and for c ≥ 4, F({12, 13}) = {{12}, {13}}. Next, for c < 3,

F({12, 23}) = {{12}, {13}, {23}, {12, 13, 23}}, for 3 ≤ c < 4, F({12, 23}) = {{12},

{13}, {23}}, and for c ≥ 4, F ({12, 23}) = {{12}, {23}}.And, for c < 3, F ({13, 23}) =

{{12}, {13}, {23}, {12, 13, 23}}, for 3 ≤ c < 4, F({13, 23}) = {{12}, {13}, {23}}, and

for c ≥ 4, F({13, 23}) = {{13}, {23}};

(iv) For c < 3, F({12, 13, 23}) = {{12}, {13}, {23}, {12, 13}, {12, 23}, {13, 23}}, for c ≥ 3,

F({12, 13, 23}) = {{12}, {13}, {23}}.

Thus, {{12}}, {{13}}, and {{23}} are the only pairwise farsightedly stable sets.

A second result considers the case where there is a network that strictly Pareto domi-

nates all other networks. That is, if there is a network g such that for all g′ ∈ G \ {g} it

holds that, for all i, Yi(g, v) > Yi(g′, v). Although the network that strictly Pareto domi-

nates all others is pairwise stable, there might be many more pairwise stable networks. We

will show in Section 5 that also the concept of the pairwise largest consistent set suffers

from a similar defect. The following result asserts that pairwise farsighted stability singles

out the Pareto dominating network as the unique pairwise farsightedly stable set.

Theorem 7 If there is a network g that strictly Pareto dominates all other networks, then

{g} is the unique pairwise farsightedly stable set.

Proof. It is immediate that g ∈ F (g′) for all g′ ∈ G \ {g} and that F (g) = ∅. Corollary 1

leads to the desired result.
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We next provide sufficient conditions on the allocation rule and/or the value function

such that there is no conflict between strong efficiency and farsighted stability.

An immediate application of Theorem 7 is the case of increasing returns to link creation

as defined in Dutta, Ghosal, and Ray (2005). This property requests that along every

nested sequence of increasingly connected networks, there is a threshold network for which

the value turns nonnegative, and both aggregate as well as payoffs of individuals who form

extra links then increase as the network becomes even larger. Under this condition, and

with a componentwise egalitarian allocation rule, gN Pareto dominates all other networks,

so Theorem 7 applies.

An allocation rule is said to be egalitarian if for every v ∈ V and g ∈ G, Yi(g, v) =

v(g)/n. The following result follows as a corollary to Theorem 7.

Corollary 3 Suppose that Y is the egalitarian rule and there is a unique strongly efficient

network ge. Then, {ge} is the unique pairwise farsightedly stable set.

Before studying the relationship between pairwise farsightedly stable sets and other

farsighted solution concepts we analyze some classical examples.

Example 4 Co-author Model (Jackson and Wolinsky, 1996). Each player is a researcher

who spends time writing papers. If two players are connected, then they are working on

a paper together. The amount of time researcher i spends on a given project is inversely

related to the number of projects, ni, that he is involved in. Formally, player i’s payoff is

given by

Yi(g) =
∑
j:ij∈g

(
1

ni
+

1

nj
+

1

ninj

)

for ni > 0. For ni = 0 we assume that Yi(g) = 0. In Figure 4 we have depicted the

3-player case. It is easily verified that the complete network g7 is the unique pairwise

stable network.

Unfortunately, no singleton set is pairwise farsightedly stable in Example 4. Indeed,

there is no network such that there is a farsightedly improving path from any other

network leading to it. More precisely, F (g0) = {g1, g2, g3, g4, g5, g6}, F(g1) = {g4, g5},

F(g2) = {g4, g6}, F(g3) = {g5, g6}, F (g4) = {g7}, F (g5) = {g7}, F (g6) = {g7}, and

F(g7) = ∅. However, a set formed by the complete and two star networks is a pairwise

farsightedly stable set of networks. The pairwise farsightedly stable sets are {g4, g5, g7},

{g4, g6, g7}, and {g5, g6, g7} in the co-author model with three players.
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Figure 4: The co-author model with three players.

Example 5 Symmetric Connections Model (Jackson and Wolinsky, 1996). Consider again

the symmetric connections model of Example 2 but now with four players, see Figure 5. In

Figure 5 all possible networks, up to permutations of players, are depicted. For instance,

the circle network, g8, represents the four possible circle networks. As before, we assume

0 < δ < 1.

First consider the case c < δ(1− δ). In this case, irrespective of the network, making

a link always strictly improves the payoffs of the players involved in making the link.

From this observation it follows immediately that the complete network g10 is the unique

pairwise stable network. Moreover, from any initial network except the complete one, it

is possible to reach the complete network by a farsightedly improving path. There are no

other networks that are reached by a farsightedly improving path when starting in the

complete network. It follows from Corollary 1 that the complete network is the unique

pairwise farsightedly stable set.

Next, suppose that δ(1−δ) < c < δ(1−δ2). Observe that 2(δ−c)+δ2 strictly exceeds

3(δ− c) and δ+ δ2+ δ3− c, but is lower than δ+2δ2− c. From this observation it follows

easily that a network is pairwise stable if and only if it is one of the four stars or the four

circle networks (g6, g8 in Figure 5).

Moreover, {g6} and {g18 , g
2
8, g

3
8, g

4
8} are pairwise farsightedly stable sets, where {g

1
8 , g

2
8, g

3
8,

g48} denotes the set of all circle networks. For any star this follows from the observation

that g6 leads to the highest possible payoff δ + 2δ2 − c for three out of four players. For

all networks but g7 it holds that none of the players gets this payoff, so there are at least

three players that would be willing to move to g6. They can do so by first destroying all
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Figure 5: The symmetric connections model with four players.

links in an appropriate order, and next adding links to reach the specific star g6 they

coordinate on. Links have to be destroyed in such a way that on the sequence of networks

thus obtained, no player gets payoff δ + 2δ2 − c. Also, any star g6 can be reached by a

farsightedly improving path starting in any of the four possible networks g7. Take a specific

star g6 and a specific network g7. If the player with payoff δ + 2δ2 − c at g7 obtains less

at g6, then the other three players would strictly improve by going to g6. They can do so

by destroying all links, and then add links to reach the desired star g6. If the player with

payoff δ + 2δ2 − c at g7 obtains the same payoff at g6, then there are two players that are

strictly better off at g6. Together they can destroy at least two links of g7, in which case a

network with only one link remains, and all players would be willing to move from there

to g6. Finally, it is possible to reach any star from another, different, star, by means of a

farsightedly improving path. The player with three links is willing to destroy all of them

and move to g0, from which any star can be reached by adding the appropriate three links.

It therefore follows from Theorem 3 that {g6} is pairwise farsightedly stable.
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It is fairly straightforward that any circle g8 belongs to F (g) whenever g is not equal

to g6 or g7. For g6 notice that the player with payoff 3(δ − c) may first delete all links to

go to g0, after which three links are added and any g8 is reached via g1, g2, and g4. For

g7 the player with payoff 3(δ − c) can sever three links to go to g1, after which one more

link is deleted by any of the players involved in the remaining link, to go to g0. Next links

are added to reach g8 in the same way as before. Since all the circles lead to identical

payoffs, it is not possible to reach a circle from a different circle by means of a farsightedly

improving path. It follows from Definition 3 that {g18, g
2
8 , g

3
8 , g

4
8} is pairwise farsightedly

stable.

The next case is δ(1−δ2) < c < δ. For this case it is crucial that 3(δ−c) < 2(δ−c)+δ2 <

δ+δ2+δ3−c < δ+2δ2−c. It is straightforward to verify that any of the six pairs of chains

{g12344 , g13244 }, {g12434 , g14234 }, {g13424 , g14324 }, {g21344 , g23144 }, {g21434 , g24134 }, {g31244 , g32144 }, and

any of the four stars (g6 in Figure 5) is pairwise stable. Here, the notation for the chains

refers to the links that are present. For instance, g12344 denotes the chain with links {1, 2},

{2, 3}, and {3, 4}. Notice that the payoffs are the same for all players for any two chains

in any of the six pairs.

That any star {g6} is pairwise farsightedly stable follows from exactly the same argu-

ment as in the case δ(1 − δ) < c < δ(1 − δ2). Now consider a specific chain g4. For all

networks, but g4, g6, and g7, the two players in g4 with payoffs δ + δ2 + δ3 − c are willing

to destroy their links to arrive at g1. Then the remaining link at g1 is severed too and g0

is reached. From there, players can add links to go to g4. Next consider a specific star g6

as the starting network. The player with payoff 3(δ − c) is sure to receive higher payoffs

in g4. He is willing to destroy all links, and g4 is reached via g0. For g7 the construction

is similar, and g4 can be reached via g1 and g0. Consider two chains that do no belong to

the same pair. There is at least one player that receives payoff 2(δ − c) + δ2 in one chain,

but not in the other. This player is willing to delete a link to go to either g2 or g3. From

there it is possible to reach the other chain via g0. Obviously, it is not possible to reach

the other chain in a pair. It follows from Definition 3 that any pair of chains identified

before is pairwise farsightedly stable.

The next case we consider is δ+ 1
2δ

2 < c. We observe that any payoff that is a positive

multiple of δ−c is negative (and the higher the multiple, the more negative). Moreover, the

payoff 2(δ−c)+δ2 is negative. Finally, δ+δ2+δ3−c > δ+δ2−c > 2(δ−c)+δ2 > 2(δ−c).

Next it is easy to verify that in each network but the empty network there is always at least

one player that strictly benefits from deleting a link. It follows that the empty network is

the only potential pairwise stable network. Since forming a link leads to negative utilities

for the players making the link, it follows that the empty network is the unique pairwise
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stable network.

Now we turn to pairwise farsighted stability. It is easily verified that for each network,

but g0, the set of players with negative payoffs are able to delete all links. It follows that

g0 ∈ F(g) for all g ∈ G \ {g0}. Now consider g0 as the starting network. For all other

networks, there is at least one player with a link that has a negative payoff. Such a player

will never cooperate to make the network under consideration the terminal network, and

as a consequence F (g0) = ∅. We derive from Corollary 1 that {g0} is the unique pairwise

farsightedly stable set.

The final case we have to consider is δ < c < δ+ 1
2δ

2. As in the previous case, it holds

that any payoff that is a positive multiple of δ−c is negative, and the higher the multiple,

the more negative. Moreover, it holds that 0 < 2(δ− c)+δ2 < δ+δ2− c < δ+ δ2+ δ3−c.

It is easy to verify that g0 is the unique pairwise stable network. However, a pairwise

farsightedly stable set that is singleton fails to exist. Indeed, there is no network such

that there is a farsightedly improving path from any other network leading to it. The

empty network {g0} is not a pairwise farsightedly stable set because obviously g0 /∈ F (g4)

and g0 /∈ F (g8). On the contrary, using by now familiar arguments, it can be shown that

any of the six pairs of chains {g12344 , g13244 }, {g12434 , g14234 }, {g13424 , g14324 }, {g21344 , g23144 },

{g21434 , g24134 }, {g31244 , g32144 } is pairwise farsightedly stable.

5 The pairwise largest consistent set

In this section we study the relationship between pairwise farsighted stability and the

largest consistent set, a concept that has been defined in Chwe (1994) for general social

environments. By considering a network as a social environment, and by allowing only

pairwise deviations, we obtain the definition of the pairwise largest consistent set.

Definition 4 Let Z0 ≡ G. Then, Zk (k = 1, 2, . . .) is inductively defined as follows:

g ∈ Zk−1 belongs to Zk with respect to Y and v if

(ia) ∀ ij /∈ g, ∃ g′ ∈ Zk−1, where g′ = g+ ij or g′ ∈ F(g+ ij) such that Yi(g′, v) < Yi(g, v)

or Yj(g′, v) < Yj(g, v) or (Yi(g′, v), Yj(g′, v)) = (Yi(g, v), Yj(g, v)).

(ib) ∀ ij ∈ g, ∃ g′, g′′ ∈ Zk−1, where g′ = g − ij or g′ ∈ F(g − ij), and g′′ = g − ij or

g′′ ∈ F(g − ij), such that Yi(g
′, v) ≤ Yi(g, v) and Yj(g

′′, v) ≤ Yj(g, v).

The pairwise largest consistent set PLCS (G) is
⋂
k≥1Z

k.
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That is, a network g ∈ Zk−1 is stable (at step k) and belongs to Zk, if all possible

pairwise deviations are deterred. Consider a pairwise deviation from g that involves mak-

ing the link ij. There might be further pairwise deviations which end up at g′, where

g + ij → g′. If either i or j is worse off at g′ or both are equally well off compared to the

original network g then the pairwise deviation is deterred. Similarly, for a pairwise devia-

tion from g that involves deleting the link ij. There might be further pairwise deviations

which end up at g′ and g′′ where g− ij → g′ and g− ij → g′′. If i is equally well or worse

off at g′ and j is equally well or worse off at g′′ compared to the original network g, then

the pairwise deviation is deterred.

Since G is finite, there exists m ∈ N such that Zk = Zk+1 for all k ≥ m, and Zm is

the pairwise largest consistent set PLCS (G). Notice that although the pairwise largest

consistent set always exists, it could be empty. However, it has been shown in Chwe (1994)

that for the case of a finite G non-emptiness holds.

Example 4 (continued) We determine the pairwise largest consistent set in the co-author

model for n = 3. Starting in g0, players {1, 2} can add a link to move to g1. The indirect

dominance relation implies that from there it is possible to reach g4 or g5. In all these

networks, players 1 and 2 have higher payoffs than at g0. It follows that g0 /∈ Z1. Starting

in g4, players 2 and 3 will add a link to move to g7. Since F(g7) = ∅, no further moves will

occur. Players 2 and 3 have higher payoffs at g7 than at g4. It follows that g4 /∈ Z1. For

similar reasons, g5 /∈ Z1 and g6 /∈ Z1. It can be verified that Z1 = {g1, g2, g3, g7}.

We show next that Z2 = {g1, g2, g3, g7}. Starting in g1, players 1 and 2 may add a link

to go to g4, a network not in Z1. From g4 the indirect dominance relation dictates a move

to g7. In g7 player 1 is worse off than in g1. It follows that no link will be added by them to

g1. Repeating such arguments, it can be shown that Z2 = {g1, g2, g3, g7} = Z3 = · · · = Z∞.

It follows that PLCS(G) = {g1, g2, g3, g7}.

Example 3 (continued) We determine the pairwise largest consistent set in the four-player

link formation game. One can easily show that Z1 = {g1, g2, g3, g4, g5, g6} ∪ {g | #(g) ≥

4} = Z2 = Z3 = · · · = Z∞.

Table 1 summarizes our findings in these two examples.

If a network is not in the pairwise largest consistent set, it cannot be a pairwise

farsightedly stable set of networks.

Theorem 8 If {g} is a pairwise farsightedly stable set, then g belongs to the pairwise

largest consistent set PLCS (G).
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Concept Example 3 Example 4

Pairwise stability {g | #(g) ≥ 4} {g7}

Pairwise farsightedly

stable sets of networks

{g1}, {g2}, {g3}

{g4, g5, g6}

{g4, g5, g7}, {g4, g6, g7},

{g5, g6, g7}

PLCS
{g1, . . . , g6}

∪{g | #(g) ≥ 4}
{g1, g2, g3, g7}

Table 1: The (no)-relationships among solution concepts for network stability.

Proof. Since {g} is a pairwise farsightedly stable set we have that for all ij /∈ g : g ∈

F(g + ij) and for all ij ∈ g : g ∈ F (g − ij). So g ∈ Z1. By induction, g ∈ Zk for k ≥ 1.

So, g ∈ PLCS(G).

Remember that two networks g and g′ are adjacent if they differ by one link. The

value function v and allocation rule Y exhibit no indifference if for any g and g′ that are

adjacent either g defeats g′ or g′ defeats g.

Theorem 9 Suppose that Y and v exhibit no indifference. If g is pairwise stable then it

belongs to the pairwise largest consistent set.

Proof. Since Y and v exhibit no indifference, we have that a pairwise stable network g

defeats (i) g + ij for all ij /∈ g and (ii) g − ij for all ij ∈ g. Thus, g ∈ F (g + ij) and

g ∈ F(g − ij). So g ∈ Z1. By induction g ∈ Zk for k ≥ 1. So, g ∈ PLCS(G).

We claimed in Section 4 that even if there is a network that strictly Pareto dominates

all other networks, the pairwise largest consistent set may contain other networks. It is not

difficult to construct examples where the no indifference property holds, and some network

strictly Pareto dominates all others. Moreover, such an example can be constructed such

that inefficient networks may be pairwise stable. It then follows from Theorem 9 that such

a network also belongs the pairwise largest consistent set. By virtue of Theorem 7, such

a network does not belong to any pairwise farsightedly stable set.

6 Conclusion

We have proposed a new concept, the pairwise farsightedly stable set, to predict which

networks may be formed among farsighted players. A set of networks G is pairwise far-

sightedly stable (i) if all possible pairwise deviations from any network g ∈ G to a network

outside G are deterred by the threat of ending worse off or equally well off, (ii) if there
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exists a farsightedly improving path from any network outside the set leading to some

network in the set, and (iii) if there is no proper subset of G satisfying (i) and (ii). We

have shown that a pairwise farsightedly stable set always exists and we provide a full

characterization of unique pairwise farsightedly stable sets of networks. As a corollary

we have given the necessary and sufficient condition such that a unique pairwise farsight-

edly stable set consisting of a single network exists. We have found that the pairwise

farsightedly stable sets and the set of strongly efficient networks may be disjoint. Never-

theless, contrary to other pairwise concepts, if there is a network that Pareto dominates all

other networks, then that network is the unique prediction of pairwise farsighted stability.

We have also been able to provide some conditions on the allocation rule and the value

function such that pairwise farsighted stability singles out the strongly efficient network.

Finally, we have studied the relationship between pairwise farsighted stability and other

concepts such as pairwise stability and the pairwise largest consistent set, a notion due to

Chwe (1994). Under some conditions, a pairwise farsightedly stable set is a refinement of

pairwise stability, which in turn is a refinement of the pairwise largest consistent set. By

means of examples we have shown that there is no general relationship between (i) pair-

wise farsightedly stable sets and pairwise largest consistent sets, (ii) pairwise farsightedly

stable sets and pairwise stability. Indeed, the pairwise stable networks may not belong to

any pairwise farsightedly stable set of networks.
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