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that the bargaining set coincides with the set of weakly stable and weakly e¢ cient

matchings in the marriage problem. First, we show that a weakly stable matching

always exists in the roommate problem. However, weak stability is not su¢ cient
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1 Introduction

Gale and Shapley (1962) introduce a two-sided matching model to answer questions such

as who marries whom, who gets which school seat, who shares a dormitory with whom.

In their seminal paper, they �rst introduce the marriage problem, in which there are two

disjoint sets of agents, say men and women, and each agent has preferences over agents

on the other side of the problem with the possibility of remaining single. No agent can

be matched with an agent from the same side. Following the marriage problem, they

investigate a generalization, the so-called roommate problem. In the roommate problem,

there exists a set of agents each endowed with preferences over all agents. Each agent is

interested in forming at most one partnership.1 A matching is said to be stable if there is

no agent who prefers being unmatched to her prescribed partner or no pair of agents prefer

being matched to each other to their current partners. They show that stable matchings

always exist for the marriage problem, whereas their existence is not guaranteed for the

roommate problem. This is a reason why the literature often restricts the analysis to

solvable roommate problems (i.e. roommate problems with stable matchings) and on

conditions to guarantee the existence of stable matchings (see e.g. Tan, 1991; Chung,

2000; Diamantoudi, Miyagawa and Xue, 2004; Klaus and Klijn, 2010).

In this paper, instead of restricting the analysis to solvable roommate problems, we

adopt a weaker notion of stability for solving the roommate problem: the bargaining set.

For the marriage problem, Klijn and Massó (2003) adapt a variation of the bargaining set

introduced by Zhou (1994) to the marriage problem. They show that the bargaining set

coincides with the set of weakly stable and weakly e¢ cient matchings.2 A matching is

weakly stable if all blocking pairs are weak. A blocking pair is said to be a weak blocking

pair if a partner of the blocking pair can form another blocking pair with a more preferred

partner. In the marriage problem, the existence of weakly stable matchings is guaranteed,

since by de�nition, all stable matchings satisfy weak stability. However, for the roommate

problem, the existence of a weakly stable matching does not follow from the existence of

a stable matching since such matching may fail to exist.

Our main results follow. First, we guarantee the existence of weakly stable matchings

by constructing such a matching even for unsolvable roommate problems. Second, we

show that weak stability is not su¢ cient for a matching to be in the bargaining set.

Moreover, when the core is non-empty, in general, it is a strict subset of the set of weakly

stable matchings. Third, we prove that the bargaining set is always non-empty. Finally,

as Klijn and Massó (2003) do for the marriage problem, we show that the bargaining set

coincides with the set of weakly stable and weakly e¢ cient matchings in the roommate

1The roommate problem is a model with important applications or extensions including coalition form-

ation (Bogomolnaia and Jackson, 2002), network formation (Jackson and Watts, 2002), kidney exchange

problem (Roth, Sönmez and Ünver, 2005) among others. Roth and Sotoymayor (1990) and Manlove

(2013) provide a complete survey on matching theory.
2A matching is weakly e¢ cient if there does not exist another matching in which all agents are better

o¤.
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problem.3

The rest of the paper is organized as follows. In Section 2 we introduce the roommate

problem and the notion of stability. In Section 3 we extend the notion of weak stability

to the roommate problem and we study its structure. In Section 4 we introduce the

bargaining set of Zhou (1994) and we investigate its relationship with the set of weakly

stable matchings. In Section 5 we conclude.

2 Roommate problems

A roommate problem (N;�) consists of a �nite set of agents N and a preference pro�le

�= (�l)l2N . Each player l 2 N has a complete and transitive preference ordering �l
over N . Throughout the paper, we assume that the preferences are strict. We write that

j �i k if agent i strictly prefers j to k, j �i k if i is indi¤erent between j and k. Since we
will consider situations j = k, although preferences are assumed to be strict, we need the

notation j �i k meaning that i prefers j at least as well as k, j �i k or j �i k. An agent
j is acceptable to another agent i if j �i i. A pair of agents i; j 2 N are mutually best if

i and j are their respective top choices among their acceptable partners.

A matching is a one-to-one function � : N ! N such that if �(i) = j, then �(j) = i. If

�(i) = j, then agents i and j are matched to one another. �(i) = i means that agent i is

single or unmatched. Given a roommate problem (N;�), we denote the set of all possible
matchings by M(N;�). A matching � is individually rational if no agent is matched

with an unacceptable partner, that is, �(i) �i i for all i 2 N . For a given matching �,
a pair of agents fi; jg forms a blocking pair if they prefer being matched to each other
than to their current partners under matching �, that is, j �i �(i) and i �j �(j). A
matching � is stable if it is individually rational and there are no blocking pairs. Gale

and Shapley (1962) show that stable matchings may not exist in the roommate problem.

A roommate problem is called solvable if the set of stable matchings is non-empty, and

is called unsolvable otherwise. It is well-known that, in the roommate problem, whenever

there exist stable matchings, it coincides with the core, in which no subset of agents

have incentives to be matched among themselves, possibly by dissolving their current

partnerships to obtain a strictly better partner.4

De�nition 1. Given a roommate problem (N;�), a ring A = fa1; : : : ; akg � N is an

ordered subset of agents, k � 3, such that (subscript modulo k)

ai+1 �ai ai�1 �ai ai for all i 2 f1; : : : ; kg.

A ring A is an odd ring if the number of agents in the ring, jAj, is odd.
3Other concepts based on a relaxation of the stability notion have been proposed for matching prob-

lems. See e.g. Abraham, Biró and Manlove (2006), Mauleon, Vannetelbosch and Vergote (2011), Iñarra,

Larrea and Molis (2013), Biró, Iñarra and Molis (2016).
4When no confusion arises, we simply denote any coalition by its agents, e.g. ij instead of fi; jg =

S � N .
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We denote the set of all odd rings by R. Tan (1991) and Chung (2000) show that,
in any given roommate problem (N;�), if the preference pro�le has no odd rings, there
exist stable roommate matchings.

A matching is said to be weakly e¢ cient if there is no other matching in which all

agents are strictly better o¤.

De�nition 2. Given a roommate problem (N;�), a matching � 2 M(N;�) is weakly
e¢ cient if there is no matching �0 2M(N;�) such that all agents are strictly better o¤,
i.e., �0(i) �i �(i) for all i 2 N .

Since stable roommate matchings might not exist, we study the existence of weakly

stable matchings in the next section.

3 Weakly stable matchings

Klijn and Massó (2003) introduce the notion of weak stability for the marriage problem.

We adapt it to the roommate problem. A blocking pair is said to be a weak blocking

pair if a partner of the blocking pair can constitute another blocking pair with a more

preferred partner.

De�nition 3. Given a roommate problem (N;�), a blocking pair (i; j) for a matching
� is a weak blocking pair if there exists another agent k 2 N such that either k �i j and
i �k �(k) or k �j i and j �k �(k).

De�nition 4. Given a roommate problem (N;�), a matching � is weakly stable if it is
individually rational and all blocking pairs are weak.

Since a stable matching is weakly stable by de�nition, the existence of weakly stable

matchings is guaranteed for the marriage problem but not for the roommate problem.

Pittel and Irving (1994) show that the probability of having an unsolvable roommate

problem sharply increases as the number of agents increases. Hence, the existence of

weakly stable matchings becomes an important issue. Next, we construct a weakly stable

matching for unsolvable roommate problems. It guarantees the existence of weakly stable

matchings for the roommate problem given that every stable matching is also weakly

stable for solvable problems.

Proposition 1. Given a roommate problem (N;�), there always exists a weakly stable
matching.

Proof. Since any stable matching is a weakly stable matching, the result straightforwardly

follows when the problem has a non-empty core. Hence, it is su¢ cient to show that there

exists a weakly stable matching whenever the core is empty. Notice �rst that if agents�

preferences form only odd rings, the matching in which all agents remain unmatched is

weakly stable, since by de�nition of odd rings all blocking pairs are weak.
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Next, let us construct a weakly stable matching for the remaining case, that is,

whenever there exists an agent in the odd ring that �nds an agent outside the odd ring

acceptable. Note that, since we consider unsolvable roommate problems, the agent in

the odd ring prefers agents in the ring to the outside agent. First, consider the reduced

problem consisting of agents outside odd rings and agents from odd rings who �nd outside

agents acceptable. Update the preferences of agents in the reduced problem. Since there

is no odd ring in the reduced problem, there exist stable matchings. Now, let us construct

a matching for the initial problem, starting from the reduced problem: match agents in

the reduced problem in a stable way and let agents from odd rings remain single, except

when the agent who �nds the outside agent acceptable is matched in the reduced problem.

The idea behind the constructed matching is as follows: �rst, we consider the reduced

problem such that no odd ring is present. Note that when an agent from an odd ring have

acceptable partners outside of the odd ring, she is considered in the reduced problem. In

this reduced problem the existence of stable matchings is guaranteed, insomuch as there

does not exist an odd ring. Then, we add all remaining agents from the odd ring as singles,

that is to say, they enlarge the matching for the reduced problem to the initial problem

by remaining unmatched at the initial problem. Hence, we only add weak blocking pairs

to the reduced problem. This way, we construct a matching for an unsolvable roommate

problem containing only weak blocking pairs, and hence the constructed matching is a

weakly stable matching.

Proposition 1 guarantees the existence of a weakly stable matching even when there is

no stable matching. We provide two examples to show how we construct a weakly stable

matching.

Example 1. Consider a roommate problem (N;�) where N = f1; 2; 3; 4g and the pref-
erences of agents are as follows:

1 : 2 3 4

2 : 3 1 4

3 : 1 2 4

4 : 1 2 3:

Note that there is an odd ring 2 �1 3 �2 1 �3 2, and there is no stable matching. We �rst
consider the reduced problem consisting of agents outside of the ring and agents that are

found by the outside agent acceptable. Here, we take into account the reduced problem

consisting of agent 1 and agent 4. Then, as they are the only players, we match them

and obtain a stable matching for the reduced problem. Then, the agents from the odd

ring are added as unmatched agents to the matching of the reduced problem. One can

easily verify that the constructed matching �1 = f14; 2; 3g is indeed weakly stable. At
the matching �1 = f14; 2; 3g there are three blocking pairs, BP(�1) = f12; 13; 23g. All of
them are weak: 3 �2 1 and f23g 2 BP(�1), hence f1; 2g is a weak blocking pair; 2 �1 3
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and f12g 2 BP(�1), hence f1; 3g is a weak blocking pair; 1 �3 2 and f13g 2 BP(�1),
hence f2; 3g is a weak blocking pair. Notice that the matching �2 = f1; 2; 3; 4g, where all
agents remain single, is also a weakly stable matching. However, our construction leads

to a matching with a higher cardinality than the matching where all agents remain single.

There are also two other weakly stable matchings: �3 = f24; 1; 3g, and �4 = f1; 2; 34g.
At the matching �3 = f24; 1; 3g there are four blocking pairs, BP(�3) = f12; 13; 14; 23g.
All of them are weak: 3 �2 1 and f23g 2 BP(�3), 2 �1 3 and f12g 2 BP(�3), 2 �1 4
and f12g 2 BP(�3), 1 �3 2 and f13g 2 BP(�3). Finally, at the matching �4 = f1; 2; 34g.
There are �ve blocking pairs, BP(�4) = f12; 13; 23; 14; 24g. All of them are weak: 3 �2 1
and f23g 2 BP(�4), 2 �1 3 and f12g 2 BP(�4), 1 �3 2 and f13g 2 BP(�4), 3 �1 4 and
f13g 2 BP(�4), and 3 �2 4 and f23g 2 BP(�4).

Example 2. Consider a roommate problem (N;�) where N = f1; 2; 3; 4; 5; 6; 7g and the
preferences of agents are as follows:

1 : 2 3 4

2 : 3 1

3 : 1 2

4 : 5 7 1

5 : 6 4

6 : 5 7

7 : 6 4:

There is an odd ring A such that 2 �1 3 �2 1 �3 2 and it is an unsolvable roommate prob-
lem. First, consider the reduced problem where agent 1 from the odd ring is included to

the agents outside the odd ring since she is found acceptable by agent 4: S = f1; 4; 5; 6; 7g.
In the reduced problem (NjS = f1; 4; 5; 6; 7g;�jS), preferences of agents are as follows:

1 : 4

4 : 5 7 1

5 : 6 4

6 : 5 7

7 : 6 4:

In (NjS;�jS) there is a unique stable matching �jS = f1; 47; 56g. Then, we add up

agents left out from the odd ring as singles to the stable matching of the reduced problem

�jS: �jS [ f2g [ f3g. We obtain a matching � for the problem (N;�) such that � =
f1; 2; 3; 47; 56g. One can easily verify that it is a weakly stable matching since all blocking
pairs, BP(�) = f12; 13; 23g, are obtained from the odd ring, and hence they are all weak

blocking pairs.

The above examples and the next one pinpoint the importance of weakly stable match-

ings for the roommate problem. Example 1 and Example 2 show that there exist weakly
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stable matchings even when the core is empty. The next example shows that whenever

the core is non-empty, the set of weakly stable matchings, in general, is a strict superset

of the core.5

Example 3. Consider a roommate problem (N;�) where N = f1; 2; 3; 4g and the pref-
erence of agents are as follows:

1 : 2 3 4

2 : 3 4 1

3 : 1 2 4

4 : 1 2 3:

There exists a unique stable matching �1 = f13; 24g. By de�nition, �1 is a weakly stable
matching. One can verify that �2 = f14; 2; 3g and �3 = f1; 2; 34g are also weakly stable.
To do so, one need to check whether every blocking pair is weak or not: BP(�2) =
f12; 13; 23g and BP(�3) = f12; 13; 14; 23; 24g. Consider now �2 = f14; 2; 3g and its
blocking pairs, BP(�2) = f12; 13; 23g. 3 �2 1 and f2; 3g 2 BP(�2). Thus, f1; 2g is a
weak blocking pair. 2 �1 3 and f1; 2g 2 BP(�2). Hence, f1; 3g is a weak blocking pair.
1 �3 2 and f1; 3g 2 BP(�2). Then, f2; 3g is a weak blocking pair. Since all blocking
pairs in BP(�2) are weak, matching �2 is weakly stable. Next, consider �3 = f1; 2; 34g
and BP(�3) = f12; 13; 14; 23; 24g. 3 �2 1 and f2; 3g 2 BP(�3). Thus, f1; 2g is a weak
blocking pair. 2 �1 3 and f1; 2g 2 BP(�3). Hence, f1; 3g is a weak blocking pair. 3 �1 4
and f1; 3g 2 BP(�3). Thus, f1; 4g is a weak blocking pair. 1 �3 2 and f1; 3g 2 BP(�3).
So, f2; 3g is a weak blocking pair. Finally, 1 �4 2 and f1; 4g 2 BP(�3) meaning that
f2; 4g is a weak blocking pair. We have checked that all blocking pairs of �3 are weak.
Hence, it is a weakly stable matching.

Corollary 1. In the roommate problem, unlike the set of stable matchings, the set of
weakly stable matchings is always non-empty. Moreover, whenever the set of stable match-

ings is non-empty, it is a (strict) subset of the weakly stable matchings.

4 Zhou�s bargaining set

In this section, following Klijn and Massó (2003), we study a variation of the bargaining

set introduced by Zhou (1994).6 The idea behind the bargaining set is that a matching can

be considered plausible (even if it is not in the core) if all objections raised by some agents

can be nulli�ed by another subset of agents. Before we de�ne Zhou�s (1994) bargaining

set for roommate problems, we need to introduce the concepts of enforcement, objection,

and counterobjection. Given a matching �, a coalition S � N is said to be able to enforce

5For the marriage problem, Klijn and Massó (2003) show that the set of weakly stable matchings can

be strictly larger than the core (the set of stable matchings).
6Aumann and Maschler (1964) were �rst to de�ne the bargaining set for cooperative games.
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a matching �0 over � if the following conditions hold: for all i 2 S, if �0(i) 6= �(i), then
�0(i) 2 S. That is, a coalition S can enforce �0 over � if for each agent in S who has a
di¤erent partner at �0 than at �, her new partner at �0 belongs to S too.

De�nition 5. An objection against a matching � is a pair (S; �0) where ; 6= S � N and

�0 is a matching that can be enforced over � by S such that �0(i) �i �(i) for all i 2 S.

De�nition 6. A counterobjection against an objection (S; �0) is a pair (T; �00) where

T � N with T n S 6= ;, T \ S 6= ;, S n T 6= ;, and �00 is a matching that can be enforced
over � by T such that �00(i) �i �(i) for all i 2 T n S and �00(i) �i �0(i) for all i 2 T \ S.

An objection is justi�ed if there does not exist any counterobjection against it. The

counterobjection should satisfy some requirements. There must be at least one agent

participating both in the objection and the counterobjection. Otherwise, the counterob-

jection can be seen as an objection since S \ T = ;. At least one agent involved in the
objection should not take part in the coalition T to form a counterobjection. Otherwise,

S � T and the counterobjection can be understood as a reinforcement to the objection.
At least one agent in the counterobjection should not be part of the objection. Other-

wise, T � S and the counterobjection can be considered as a re�nement to the objection.
With the concepts of objection and counterobjection, we adapt Zhou�s (1994) notion of

bargaining set to the roommate problem.

De�nition 7. Given a roommate problem (N;�), the bargaining set is the set of match-
ings that have no justi�ed objections:

Z(N;�) = f� 2M(N;�) j for every objection at � there is a counterobjectiong:

Given a roommate problem (N;�), let Z(N;�),WS(N;�), andWE(N;�) be the the
bargaining set, the set of weakly stable matchings, and the set of weakly e¢ cient match-

ings, respectively. When no confusion arises, we write Z = Z(N;�), WS = WS(N;�),
and WE =WE(N;�).
In contrast to the marriage problem, the non-emptiness of the bargaining set is not

guaranteed since a roommate problem need not have any stable matching. Although, we

have shown that there always exists a weakly stable matching, it is not su¢ cient for a

matching to be in the bargaining set. The reason behind is that a weakly stable matching

need not satisfy weak e¢ ciency. If a weakly stable matching is not weakly e¢ cient, an

objection of the set of agents N cannot be counterobjected. Hence, it is not included

in the bargaining set. Next, we revisit Example 1 to show that, for a given roommate

problem (N;�), there may exist a weakly stable matching that is not weakly e¢ cient.

Example 4 (Example 1 revisited). Consider a roommate problem (N;�) where N =
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f1; 2; 3; 4g and the preferences of agents are as follows:

1 : 2 3 4

2 : 3 1 4

3 : 1 2 4

4 : 1 2 3:

Remember that there is an odd ring: 2 �1 3 �2 1 �3 2, and there is no stable matching.
There are four weakly stable matchings: �1 = f14; 2; 3g, �2 = f1; 2; 3; 4g, �3 = f24; 1; 3g,
and �4 = f1; 2; 34g. Although �1, �2, �3, �4 are weakly stable, only �1 is weakly e¢ cient.
Since agent 4 is matched with her top choice under matching �1, �1(4) = 1, there is no

matching in which all agents can be better o¤ than at �1, and hence �1 is weakly e¢ cient.

Now, consider another matching �0 = f14; 23g. All agents are strictly better o¤ at �0 than
at �2 = f1; 2; 3; 4g: 4 �1 1, 3 �2 2, 2 �3 3, and 1 �4 4. All agents are strictly better o¤
at �0 than at �3 = f24; 1; 3g: 4 �1 1, 3 �2 4, 2 �3 3, and 1 �4 2. All agents are strictly
better o¤ at �0 than at �4 = f1; 2; 34g: 4 �1 1, 3 �2 2, 2 �3 4, and 1 �4 3. Hence, �2, �3
and �4 are weakly stable but not weakly e¢ cient.

Example 4 shows that weak stability is not su¢ cient for a matching to be in the

bargaining set. The matchings �2, �3, �4 are weakly stable but all agents are better o¤

at the matching �0. That is to say, S = N with the matching �0 constitutes a justi�ed

objection against the matchings �2, �3, �4. Hence, neither �2 nor �3 nor �4 are in the

bargaining set. Nevertheless, given a roommate problem (N;�), we can construct a
matching such that for each objection, there exists a counterobjection. Hence, for any

given roommate problem (N;�), the bargaining set is always non-empty.

Theorem 1. Given a roommate problem (N;�), the bargaining set Z(N;�) is non-empty.

Proof. First, if the given roommate problem (N;�) has a non-empty core, the statement
straightforwardly follows from the fact that the core is a subset of the bargaining set.

Therefore, it is su¢ cient to show that there always exists a matching in the bargaining

set for unsolvable roommate problems.

Consider an unsolvable roommate problem (N;�). Following Tan (1991) and Chung
(2000), there exists an odd ring A = fa1; : : : ; akg � N , k � 3, such that (subscript

modulo k), ai+1 �i ai�1 �i ai for all i 2 f1; : : : ; kg. Let a(l) be the position of agent l in
the ring A. Notice that a�1(a(l)+1) (a�1(a(l)�1)) is simply the identity of the successor
(predecessor) of agent l in the ring. We consider two di¤erent cases:

Case 1: All agents in an odd ring do not �nd any agent outside the ring acceptable: for

all l 2 A 2 R, k �l l only if k 2 A 2 R.
Since all odd rings are closed, agents outside an odd ring A can be matched among

themselves in a stable way. Hence, there is no (weak) blocking pair outside of odd rings.

By de�nition of odd rings, all blocking pairs are weak. Now, consider a matching � such
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that all agents in any odd ring remain unmatched and the agents outside of odd rings

are matched among themselves in a stable way. Take a coalition S � fi; jg, k =2 S, and
fi; j; kg � A such that i is the immediate predecessor of j in A. Then, j �i i, i �j j.
Note that S is a strict subset of agents from odd rings since all agents from odd rings

cannot be better o¤ all together. Now, de�ne a matching �0 where �0(i) = j, �0(j) = i,

and whenever an odd ring consists of more than three agents, �0(l) = a�1(a(l) + 1) for all

l 2 S n fi; jg, �0(l) = l for all l 2 AnS, and �0(l) = �(l) for all l 2 N nA. Note that in an
odd ring formed by three agents k 2 A n S is the unique agent such that �0(k) = k. We
have that j = �0(i) �i �(i) = i, i = �0(j) �j �(j) = j, �0(l) = a�1(a(l)+1) �l l = �(l) for
all l 2 S nfi; jg. Hence, (S; �0) is an objection against the matching �. Notice that this is
the only type of objection that can be formed against the matching � since such coalition

can be formed by agents who are part of an odd ring. Thus, it is su¢ cient enough to

show that there always exists a counterobjection (T; �00) against such an objection (S; �0).

Now, consider a coalition T � fj; kg, i =2 T , and j is the immediate predecessor of k
in A. Then, k �j i �j j, j �k k. Now, de�ne a matching �00 where �00(j) = k, �00(k) = j,
�00(l) = �0(l) for all l 2 N n fj; k; �0(j) = ig, �00(i) = i. First, note that, i 2 S n T ,
j 2 S \ T , and k 2 T n S, and T can enforce matching �00 over �. One can easily verify
that �00(j) = k �j i = �0(j), �00(l) �l �0(l) for all l 2 S \ T , �00(k) = j �k k = �(k), and
�00(l) = �0(l) �l �(l) for all l 2 T n S except k. Hence, (T; �00) is a a counterobjection
against (S; �0).

Case 2: An agent outside an odd ring is acceptable by some agent in an odd ring.

First, notice that following the same argument used in Case 1, we can show that any

objection raised within an odd ring has a counterobjection.

It follows from the de�nition that the agent outside of an odd ring is less preferred

than agents in an odd ring, since otherwise there would exist a stable matching. Now,

de�ne a matching � in the following way. For the agents outside of odd rings and agents

from odd rings who �nd outside agents acceptable, we consider the reduced problem and

update their preferences in the reduced problem. In this reduced problem, there exist

stable matchings. Hence, we match agents in the reduced problem in a stable way. To

this matching we add all other agents of the odd ring as they remain unmatched. In this

way, we obtain a matching � for the initial problem. We need to show that for every

objection raised against the matching �, there exists a counterobjection.

Note �rst that S 6= N , since the agents in the reduced problem cannot be better o¤

simultaneously. This follows from the fact that they are not found acceptable by agents

in odd rings and they are matched in a stable way. Now, suppose that agent i from an

odd ring is matched with an outside agent i0 =2 A. Take a coalition S � fi; jg, k =2 S, and
fi; j; kg � A such that i is the immediate predecessor of j in A. Then, j �i i0, i �j j.
Now, de�ne a matching �0 as follows: �0(i) = j, �0(j) = i, and whenever an odd ring

consists of more than three agents, �0(l) = a�1(a(l) + 1) for all l 2 S n fi; jg, �0(l) = l for
all l 2 AnS, and �0(l) = �(l) for all l 2 N nA. Note that in an odd ring formed by three
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agents, k 2 A n S is the unique agent such that �0(k) = k. Then, j = �0(i) �i �(i) = i0,
i = �0(j) �j �(j) = j, a�1(a(l) + 1) = �0(l) �l �(l) = l for all l 2 S n fi; jg since coalition
S is formed by agents who are in an odd ring. Thus, (S; �0) is an objection against the

matching �. Moreover, notice that, because of the structure of odd rings, this is the only

construction of an objection that can be raised against matching �. Now, it is only left

to show that there always exists a counterobjection against the objection (S; �0).

Now, consider a coalition T � fj; kg, i =2 T , and j is the immediate predecessor of k
in A. Then, k �j i �j j, j �k k. Now, de�ne a matching �00 where �00(j) = k, �00(k) = j,
�00(l) = �0(l) for all l 2 N n fj; k; �0(j)g, �00(�0(j)) = �0(j), and �00(�0(k)) = �0(k). First,
note that, i 2 S n T , j 2 S \ T , and k 2 T n S, and T can enforce matching �00 over
�. One can easily verify that �00(j) = k �j i = �0(j), �00(l) �l �0(l) for all l 2 S \ T ,
�00(k) = j �k k = �(k), and �00(l) = �0(l) �l �(l) for all l 2 T nS except k. Hence, (T; �00)
is a a counterobjection against (S; �0).

We have shown that in an unsolvable roommate problem, there exists a matching �

such that for every objection, there is a counterobjection which concludes the proof.

Klijn and Massó (2003) show the set of weakly stable and weakly e¢ cient matchings

coincides with the bargaining set for the marriage problem. As the non-emptiness of

the bargaining set is now guaranteed, the question arises whether the characterization

obtained for the marriage problem can be carried over to the roommate problem. Next

theorem shows that, in the roommate problem, the bargaining set also coincides with the

set of weakly stable and weakly e¢ cient matchings.

Theorem 2. Given a roommate problem (N;�), the bargaining set coincides with the set
of weakly stable and weakly e¢ cient matchings.

Proof. We �rst prove that a matching that does not satisfy weak stability or weak e¢ -

ciency cannot be an element of the bargaining set, WS \WE � Z.
It follows from the relations S n T 6= ;, T n S 6= ;, S \ T 6= ; that if a matching is not

weakly e¢ cient, then coalition N has a justi�ed objection. Hence, it cannot be contained

in the bargaining set. Next, we will show that matchings that are not weakly stable are

not in the bargaining set.

Let � be an individually rational matching that is not weakly stable. Note that if it

is not individually rational, since S = flg such that l �l �(l) has a justi�ed objection
against matching � insomuch as S n T and S \ T cannot be non-empty simultaneously.
Then, by de�nition of weak stability, there is a blocking pair (i; j) that is not weak. Let

S = fi; jg and let �0 be the matching de�ned as follows: �0(i) = j, �0(j) = i, �0(l) = �(l)
if �(l) =2 fi; jg and �0(l) = l if �(l) 2 fi; jg. Then, (S; �0) is an objection against � since
�0(i) �i �(i), �0(j) �j �(j), and S enforces �0 over �.
Now, assume that there is a counterobjection formed by a coalition T and a matching

�00 that can be enforced over � by T . Then, since, S n T 6= ; and S \ T 6= ;, without loss
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of generality, we can say i 2 T and j =2 T . Note that

�00(i) �i j �i �(i) �i i (1)

where the �rst relation follows from �00(i) �i �0(i) since i 2 T \ S, the second relation
follows from the construction of �0 and i 2 S, and the last relation follows from the

individual rationality of the matching �. Moreover, notice that, it follows from (1) that

�00(i) 6= i.
We will show that (i; �00(i)) is a blocking pair of � such that �00(i) �i j which contra-

dicts that (i; j) is not a weak blocking pair, and hence the assumption on the existence

of a counterobjection does not hold. To do so, it is su¢ cient to prove

�00(i) �i �(i); (2)

�00(i) �i j; (3)

i ��00(i) �(�00(i)): (4)

Notice �rst that (2) directly follows from (1). Next, we show that (3) holds. From (2) it

follows that �00(i) 6= �(i). Since T can enforce the matching �00 over � and �00(i) 6= �(i), it
follows from the enforcement condition that f�00(i); ig � T . Since j =2 T , we see �00(i) 6= j.
Then, putting �00(i) 6= j in (1), we conclude �00(i) �i j.
Finally, let us show that (4) holds. Until now, we have seen that �00(i) =2 fi; jg.

Together with the fact that S = fi; jg, it follows �00(i) =2 S. Moreover, we have observed
that �00(i) 2 T . Thus, �00(i) 2 T nS. It follows from the de�nition of the counterobjection
i = �00(�00(i)) ��00(i) �(�00(i)). Now, suppose i = �(�00(i)). Then, �(i) = �00(i) which

contradicts (1). Hence, i 6= �(�00(i)) and (4) follows which �nishes the proof of the

inclusion WS \WE � Z.
Next, we show that the bargaining set contains weakly stable and weakly e¢ cient

matchings, WS \WE � Z.
Let � be a matching that is weakly stable and weakly e¢ cient. Suppose that a coalition

S � N has an objection against the matching �. We need to show that there exists a

counterobjection (T; �00) against (S; �0). Notice �rst that since � is weakly e¢ cient, S 6= N .
By individual rationality and enforcement it follows that coalition S consists of blocking

pairs that are matched in S.

Now, take an agent k 2 N n S. If there is a pair (i; j) in S matched in �0 such that
k 6= �(j), then, whenever S � fi; jg, there exists a counterobjection (T; �00) against (S; �0)
such that T = fi; j; kg and matching �00 is de�ned as follows: �00(i) = j, �00(l) = �(l) for
l =2 fi; j; �(i); �(j)g, �00(l) = l if l = �(i) 6= i or if l = �(j) 6= j. Note that for S\T = fi; jg,
�00(i) = j �i �0(i), �00(j) = i �j �0(j) = i and for T n S = fkg, k = �00(k) �k �(k) = k.
Next, consider the case where S is formed by a pair of agents. Then, S = fi; jg

consists of a blocking pair (i; j) for the matching �. Since � is weakly stable, there

exists another blocking pair (i; j0) such that j0 �i j, i �j0 �(j0) or another blocking pair
(i0; j) such that j �i0 �(i0), i0 �j i. Then, T = fi; j0g can enforce the matching �00
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de�ned by �00(i) = j0; �00(l) = �(l) for l =2 fi; j0; �(i); �(j0)g, �00(l) = l if l = �(i) 6= i or
if l = �(j0) 6= j0, since for S \ T = fig, j0 = �00(i) �i �0(i) = j, and for T n S = fj0g,
i = �00(j0) �j0 j0 = �(j0). Hence, (T; �00) is a counterobjection against the objection (S; �0).
Likewise, if there is a blocking pair (i0; j) for � such that j �i0 �(i0) and i0 �j �(j), then
one can construct a matching �00 enforced over � by T = fi0; jg, and show that (T; �00) is
a counterobjection against (S; �0).

Finally, suppose that there is no pair fi; jg � S matched in �0 such that k 6= �(j).

Then, for every pair fi; jg � S such that �0(i) = j and �0(j) = i, we have k = �(j).

Hence, S consists of only one such a pair. Then, following the same argument used when

the coalition S is formed by a pair of agents, we can show that there is a counterobjec-

tion (T; �00) against the objection (S; �0). This �nishes the proof of the bargaining set

containing weakly stable and weakly e¢ cient matchings, WS \WE � Z. Together with
the reverse inclusion, WS \WE � Z, we conclude that WS \WE = Z.

Other solution concepts have been proposed to ovecome the lack of stable matchings

for the roommate problem. Iñarra, Larrea and Molis (2008) introduce the notion of P -

stable matchings based on the stable partitions due to Tan (1991). For solvable roommate

problems, the set of stable matchings coincide with the set of P -stable matchings.7 How-

ever, one can verify that none of the P -stable matchings in Example 1 of Iñarra, Larrea

and Molis (2008) belongs to the bargaining set of the given problem, whereas the matching

f1; 2; 3; 45; 6g is included in the bargaining set and is not a P -stable matching.
The standard enforceability notion used to de�ne the bargaining set violates the as-

sumption of coalitional sovereignty, the property that an objecting coalition cannot en-

force the organization of agents outside the coalition. Coalitional sovereignty requires

that nothing changes for the una¤ected agents. Una¤ected agents are those agents who

are not part of the deviating coalition and were not together with any agent of the devi-

ating coalition in the original coalition structure. For roommate problems, if a coalition

deviates, then it is free to form any match between its members; it cannot a¤ect existing

matches between agents outside the coalition, and previous matches between coalition and

non-coalition members are destroyed.8 Formally, given a matching �, a coalition S � N
is said to be able to enforce a matching �0 over � if the following conditions hold: (i)

�0(i) =2 f�(i); ig implies fi; �0(i)g � S and (ii) �0(i) = i 6= �(i) implies fi; �(i)g \ S 6= ;.
7Iñarra, Larrea and Molis (2013) propose the notion of absorbing sets for the roommate problem. For

solvable problems, they show that a set is an absorbing set if and only if it is a singleton set containing

a stable matching. Hence, the union of all absorbing sets in a solvable roommate problem coincides with

the core.
8Several papers have used notions of enforceability that respect coalitional sovereignty, see Diaman-

toudi and Xue (2003) for hedonic games, Mauleon, Vannetelbosch and Vergote (2011) for one-to-one

matching problems with farsighted agents, Klaus, Klijn and Walzl (2011) for roommate markets with

farsighted agents, Echenique and Oviedo (2006) or Konishi and Ünver (2006) for many-to-many match-

ing problems, Mauleon, Molis, Vannetelbosch and Vergote (2014) for one-to-one matching problems and

for roommate markets, Herings, Mauleon and Vannetelbosch (2017) for one-to-one matching problems

with myopic agents, and Ray and Vohra (2015) for non-transferable utility games.
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Hence, any new match in �0 that does not exist in � should be between players in S, and

for destroying an existing match in �, one of the two agents involved in that match should

belong to coalition S. However, the proofs for Theorem 1 and Theorem 2 are not a¤ected

if we replace the enforceability condition. Hence, both Theorem 1 and Theorem 2 still

hold under the enforceability condition that does satisfy coalitional sovereignty.

5 Conclusion

Gale and Shapley (1962) showed that stable matchings may not exist in the roommate

problem, but always exist in the marriage problem. The bargaining set is a coarsening

of the set of stable matchings. Klijn and Massó (2003) showed that the bargaining set

coincides with the set of weakly stable and weakly e¢ cient matchings in the marriage

problem. For the roommate problem, the existence of a weakly stable matching does not

follow from the existence of a stable matching since such matching may fail to exist. First,

we have shown that a weakly stable matching always exists in the roommate problem.

With respect to the bargaining set, weak stability is not su¢ cient for a matching to be in

the bargaining set. Second, we have proved that, even for unsolvable roommate problems,

the bargaining set is always non-empty. Finally, as Klijn and Massó (2003) did for the

marriage problem, we have shown that the bargaining set coincides with the set of weakly

stable and weakly e¢ cient matchings in the roommate problem.

An interesting direction for future research is to study the robustness of the bargain-

ing set for matching problems. The bargaining set checks the credibility of an objection

at a given matching.9 Only objections which have no counterobjections are justi�ed, but

counterobjections are not required to be justi�ed. Dutta, Ray, Sengupta and Vohra (1989)

propose a notion of a consistent bargaining set in which objections and counterobjections

need to be justi�ed. In addition, the bargaining set can be seen as a limited farsightedness

concept. One could adopt the horizon-K farsighted set introduced by Herings, Mauleon

and Vannetelbosch (2019a) to study the in�uence of the degree of farsightedness in match-

ing problems. The concept of horizon-K farsighted set generalizes existing concepts where

all players are either fully myopic or fully farsighted. Marriage and roommate problems

with fully farsighted agents have been analyzed by Mauleon, Vannetelbosch and Ver-

gote (2011) and Klaus, Klijn and Walzl (2011), respectively. Recently, Herings, Mauleon

and Vannetelbosch (2019b) study stable sets for marriage problems under the assump-

tion of a mixed population of myopic and farsighted agents. When all men are myopic

and the top choice of each man is a farsighted woman, the singleton consisting of the

9Recently, Hirata, Kasuya and Tomoeda (2018) introduce a solution concept, the stable against robust

deviations (SaRD) matchings for roommate problems. A deviation from a matching � is robust up to

depth k, if any of the deviating agents will never end worse-o¤ than at � after any sequence of at most

k subsequent deviations occurs. A matching is SaRD up to depth k, if there is no robust deviation up

to depth k. They provide examples to show that the bargaining set and the set of SaRD matchings are

di¤erent.
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woman-optimal stable matching is a myopic-farsighted stable set. However, they provide

examples of myopic-farsighted stable sets consisting of a core element di¤erent from the

woman-optimal matching or even of a non-core element.
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